- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Hull, T. (1)
-
Lubiw, A. (1)
-
Mundilova, K. (1)
-
Nara, C. (1)
-
O'Rourke, J. (1)
-
Tkadlec, J. (1)
-
Uehara, R. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
Bahoo, Y. (1)
-
Georgiou, K. (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Bahoo, Y.; Georgiou, K. (Ed.)We introduce a notion we call quasi-twisting that cuts a convex polyhedron P into two halves and reglues the halves to form a different convex polyhedron. The cut is along a simple closed quasigeodesic. We initiate the study of the range of polyhedra produced by quasi-twisting P, and in particular, whether P can “quasi-twist flat,” i.e., produce a flat, doubly-covered polygon. We establish a sufficient condition and some necessary conditions, which allow us to show that of the five Platonic solids, the tetrahedron, cube, and oc- tahedron can quasi-twist flat. We conjecture that the dodecahedron and icosahedron cannot quasi-twist flat, and prove that they cannot under certain restrictions. Many open problems remain.more » « less
An official website of the United States government

Full Text Available